Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions

I. First row atoms

Per-Olof Widmark¹, Per-Åke Malmqvist², and Björn O. Roos²

¹ IBM Sweden, P.O.B. 4104, S-203 12 Malmö, Sweden

² Department of Theoretical Chemistry, Chemical Centre, P.O.B. 124, S-221 00 Lund, Sweden

Received October 25, 1989; received in revised form February 10, 1990/Accepted March 12, 1990

Summary. Generally contracted basis sets for first row atoms have been constructed using the Atomic Natural Orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over several atomic states, positive and negative ions, and atoms in an external electric field. The contracted basis sets give virtually identical results as the corresponding uncontracted sets for the atomic properties, which they have been designed to reproduce. The design objective has been to describe the ionization potential, the electron affinity, and the polarizability as accurately as possible. The result is a set of well-balanced basis sets for molecular calculations. The starting primitive sets are 8s4p3d for hydrogen, 9s4p3d for helium, and 14s9p4d3f for the heavier first row atoms.

Key words: Atomic natural orbitals - Basis sets - General contraction

1. Introduction

Atomic basis sets for correlated molecular wave functions have in recent years attracted considerable interest, influenced by the realization that traditional Gaussian basis sets with segmented contraction and usually one or two polarization functions are not sufficient for accurately describing dynamic correlations. For example, a recent study of CCl and ClF clearly indicates the importance of a good description of the 3d orbital of chlorine in order to obtain quantitative results for the binding energy [1]. A systematic study of the basis set dependence of the electron affinity of oxygen shows that a very large primitive basis set is needed to approach the converged result [2]. These and other similar results yield basis sets that are prohibitively large for molecular calculations, and a method for contracting them, with as small effect on the quality as possible, is clearly needed. The general contraction scheme based on atomic natural orbitals (ANOs), which has been suggested by Almlöf and Taylor [3], shows great promise in this respect. A necessary ingredient, which has made it possible to use generally contracted basis sets, is the appearance of efficient computer programs for the calculation of the two-electron integrals [4, 5].

The aim of contracting an atomic basis set is to reduce the one-particle space while reproducing the atomic properties obtained with the primitive set as accurately as possible. The basis sets are normally to be used in molecular calculations. Important atomic properties for an accurate description of a chemical bond are the ionization potential, the electron affinity, and the polarizability. The basis sets presented in this contribution have been prepared to yield only small contraction losses for these properties.

The introduction of the ANOs [3, 6] was a major step towards saturated basis sets for molecular calculations. The original idea was to perform a correlated calculation on the atomic ground state using the primitive set of Gaussian type functions, and to use the most highly occupied natural orbitals in the contracted basis set. The natural orbitals with occupation numbers below a given threshold were discarded, leading to a substantial reduction in the size of the one-particle basis, with only a small contraction error for the atomic state. Such a contraction scheme has the benefit of retaining as much of the atomic correlation energy as possible with a given number of basis functions. A further benefit lies in the simplification obtained in the analysis of the molecular orbitals, since there is a one-to-one correspondence between the basis functions and the atomic orbitals. One drawback with this scheme is the bias obtained in the basis set towards the atomic ground state. As a consequence the spectroscopic properties converge rather slowly with the number of basis functions. This is exemplified for the oxygen atom in Table 4.

The modification of the original ANO scheme presented in this work allows the determination of ANOs which describe the atom, the positive and negative ions, and also the atomic polarization in a balanced way. This is achieved by performing calculations on a number of atomic states, also including calculations where the atom has been placed in a homogeneous electric field. The wave function used is an expansion in all single and double replacement states based on a Hartree–Fock reference state. The contracted basis set is obtained from the natural orbitals corresponding to the *average* density matrix from all these wave functions. The most important electronic structures that have been included in this averaging procedure are for the first row atoms (B - F): the atomic ground state, the ground states of the positive and negative ions, and the atomic ground state perturbed by an external electric field. In some cases atomic excited states have also been included. The atoms H, He, Li, Be, and Ne had to be treated in a special way, as will be described in more detail below.

Almlöf et al. have in a recent paper [6] studied the ANO contraction error for the total energy, the correlation energy and the dipole moment of the HBr molecule. Their approach differs from the present one in the treatment of the diffuse part of the basis set. Instead of using the ANO scheme for all orbitals they suggest that the outermost functions should be left uncontracted in order to allow for a more flexible description of the outer region. We do not believe that such an approach is necessary in the present scheme where the polarizability is explicitly included in the basis set optimization. It is also claimed that the orbitals used to describe angular correlation also account for polarization effects. The present study shows, however, that the orbitals obtained by polarizing the atom are more diffuse than those describing angular correlation. A more extended set of correlating orbitals is therefore necessary in order to include effective polarization functions in the same set.

ANO for the halogens F, Cl, and Br, obtained using the average natural orbitals of the neutral atom and the negative ion SDCI wave functions, were

recently derived by Langhoff et al. and were used in multi-reference CI calculations on the aluminium monohalides [7].

2. The averaging procedure

The present ANO sets are designed to be general purpose basis sets for molecular calculations. Important atomic properties, which should be well reproduced by a basis for molecular calculations, are the ionization potential, the electron affinity, and the polarizability. The contracted basis sets are constructed to reproduce the uncontracted basis set results for these properties as accurately as possible, by averaging the density matrices for the neutral atom, the positive and negative ions and the atom perturbed by a homogeneous electric field. Further, the low spin state with the same electronic structure as the ground state of the neutral atom was also included in the averaging whenever it existed.

The average over several states is performed on the one-electron density matrices for the different states, and the final ANO orbital set is obtained by deleting those natural orbitals of the averaged density matrix that have the smallest occupation numbers.

The term "ANO basis set", and the reason for using it, has nothing to do with the selection and the optimization of the uncontracted basis set, but is relevant only to the subsequent contraction. When a general, or Raffenetti [5], type contraction scheme is used, a new basis set is formed as a non-singular linear transformation of the uncontracted AOs. If the new basis set is as large as the original one, nothing is gained, but on the other hand there is no contraction error. Discarding one or more of the new basis functions leads in general to a contraction error when the new basis functions are used in a molecular orbital calculation. The reason for using an ANO type basis set is that this minimizes the contraction error in the following sense. Consider a diagonal element of an average density matrix and assume an orthonormal basis. Recalculating the wave functions without the corresponding basis function leads to a contraction error. The diagonal element under consideration will be zero if and only if this error is zero. Furthermore, it is a non-negative and continuous function of the contraction error. Therefore the diagonal element of the density matrix is a valid measure of the resulting error. Its minimization results in the criterion that the least harmful effect is obtained by diagonalizing the matrix and deleting the ANO with the smallest occupation number. The same applies to sums of diagonal elements when more basis functions are excluded.

The calculations are not performed in spherical symmetry and different components of the same atomic shell are therefore not necessarily equivalent. Furthermore, symmetry breaking, which mixes different shells, always occurs when the atom is placed in an external electric field. Therefore, an anisotropic basis set would be produced by a straightforward averaging of the different density matrices. Isotropy can, however, be restored by simply performing an average over all possible orientations in space of the atom, which can be shown to remove the shell mixing blocks of the density matrix without destroying the desired properties of the natural orbitals. This spherical averaging is easily shown to be equivalent to simply averaging the different components of a given shell and zeroing out the off diagonal blocks of the density matrix. To understand the averaging procedure we treat a single orbital and work in a basis of complex spherical harmonics, $Y_{lm}(\theta, \varphi)$. The atomic orbital can then in the general case be written as

$$f(r, \theta, \varphi) = \sum_{n,l,m} c_{nlm} x_{nl}(r) Y_{lm}(\theta, \varphi), \qquad (1)$$

which yields the following density matrix elements,

$$P_{nlm,n'l'm'} = c_{nlm}^* c_{n'l'm'}.$$
 (2)

Following the notation of Silver [8], a rotation of the orbital in space is performed with the following result,

$$f_{\alpha\beta\gamma} = \hat{D}(\alpha, \beta, \gamma)f = \sum_{n,l,m} c_{nlm} x_{nl}(r) \hat{D}(\alpha, \beta, \gamma) Y_{lm}(\theta, \varphi)$$
$$= \sum_{n,l,m} c_{nlm} x_{nl}(r) \sum_{m'} D_{m'm}^{(1)}(\alpha, \beta, \gamma) Y_{lm'}(\theta, \varphi),$$
(3)

where $D_{m'm}^{(1)}(\alpha, \beta, \gamma)$ is the Wigner rotation matrix for the Euler angles α, β , and γ . The density matrix elements produced by this rotated orbital can be written as

$$P_{nlm,n'l'm'}(\alpha,\beta,\gamma) = c^*_{nlm}(\alpha,\beta,\gamma)c_{n'l'm'}(\alpha,\beta,\gamma), \tag{4}$$

where

$$c_{nlm}(\alpha, \beta, \gamma) = \sum_{m''} c_{nlm''} D_{mm''}^{(1)}(\alpha, \beta, \gamma).$$
(5)

The rotated density matrix can be averaged over all possible orientations by evaluating the integral over the Euler angles

$$\int P_{nlm,n'l'm'} d\alpha \sin \beta \, d\beta \, d\gamma = \sum_{m'',m'''} c_{nlm''}^* c_{n'l'm'''} \\ \times \int D_{mm''}^{(1)*}(\alpha, \beta, \gamma) D_{m'm'''}^{(1)}(\alpha, \beta, \gamma) \, d\alpha \sin \beta \, d\beta \, d\gamma \\ = \frac{8\pi^2}{2l+1} \, \delta_{ll'} \delta_{mm'} \sum_{m''} P_{nlm''n'l'm''}.$$
(6)

Thus the averaging produces a density matrix which is block diagonal in blocks defined by l and m. The blocks defined by l, m and l, m' are also identical and are obtained as the average over all m values for a given l,

$$\tilde{P}_{nlm,n'lm} = \frac{l}{2l+1} \sum_{m'} P_{nlm',n'lm'}.$$
(7)

The above derivation is valid for every orbital density and thus also for the full density matrix.

So far we have worked with complex spherical harmonics, but most integral programs use a real representation of the angular momentum functions. The density submatrix over m for a given l, n, and n' is a unit matrix multiplied with a scale factor, and a unitary transformation will leave it unchanged. Working with Cartesian basis functions, the density matrix can either be transformed into a real spherical harmonics basis before averaging, or the

ANO basis sets for correlated molecular wave functions

following explicit averaging formula can be used,

$$P(p) = \frac{1}{3}P(x) + \frac{1}{3}P(y) + \frac{1}{3}P(z),$$

$$P(d) = \frac{1}{5}P(xy) + \frac{1}{5}P(xz) + \frac{1}{5}P(yz) + \frac{2}{5}P(xx) + \frac{2}{5}P(yy) + \frac{2}{5}P(zz),$$

$$P(f) = \frac{1}{7}P(xyz) + \frac{6}{7}P(xxx) + \frac{6}{7}P(yyy) + \frac{6}{7}P(zzz) + \frac{2}{7}P(xxz) + \frac{2}{7}P(xzz) + \frac{2}{7}P(yzz),$$
 (8)

with corresponding, but more involved expressions for the higher angular momentum.

This state averaged and symmetry broken way of determining the density matrices has the benefit of yielding basis sets of a given quality with fewer contracted functions than that of the original scheme [3], which is based on a single symmetry restricted case. There is a general trend that functions belonging to the same main shell, e.g. 4s-4f, tend to have similar occupation numbers, as noted previously by others [3, 9], and it therefore seems to be a good strategy to truncate the natural orbital space approximately at a shell boundary. This strategy has been followed except for the larger 6s5p3d2f basis set, and the fact that no angular momentum functions higher than f-type have been used; such functions are certainly needed in very accurate work, but it was not felt necessary to include them in a general purpose basis set.

Hydrogen and lithium, being effective one-electron systems, had to be treated in a different way to yield meaningful natural orbitals. The contraction coefficients for hydrogen were obtained by averaging over the atomic ground state with and without an external electric field, the hydrogen molecule, and the anion (the last two at the SDCI level). For lithium the average was performed over the cation, the neutral atom with and without electric field (at the SCF level), and the lithium molecule at the SDCI level. The average for neon was performed on the neutral atom with and without electric field (SDCI).

The electric field strength used in the averaging calculations was 0.01 a.u. for the lighter atoms and 0.05 a.u. for O, F, and Ne. These rather large field strengths were chosen in order to achieve an approximately equal weight of the density contribution from polarization and correlation, respectively.

3. The primitive basis set

The starting primitive Gaussian basis sets were taken from the compilation of van Duijneveldt [10]. The sets chosen were the 7s set for hydrogen, the 8s set for helium, and the 13s8p set for the heavier atoms. For lithium and beryllium 8p functions were optimized with respect to the SCF energy for the lowest excited state with the 2p orbital occupied. The exponents $(\zeta_i, i = 1, n)$ were not individually optimized, but a modified even tempered form [11] was used with three variational parameters $(c_{-1}, c_0, \text{ and } c_1)$:

$$\ln(\zeta_k) = c_{-1}/k + c_0 + c_1k; \quad k = 1, \dots, n; \quad \zeta_1 > \zeta_2 > \dots > \zeta_n, \tag{9}$$

which yields energies close to that obtained with individually optimized exponents. The starting primitive sets were augmented with higher angular momentum functions optimized in an even tempered form with respect to the SDCI energy of the ground state of the atom, where hydrogen and lithium had to be treated in a special way (vide infra). This primitive set was further augmented with a diffuse function for each of the s, p, d, and f sets for the heavy atoms, and the s, p, and d sets for hydrogen and helium. The resulting primitive basis sets had the size 14s9p4d3f for the heavier atoms, 8s4p3d for hydrogen and 9s4p3d for helium.

Hydrogen and lithium had to be treated in a special way. The p- and d-type functions for hydrogen were optimized with respect to the SDCI energy for H₂, while for lithium they were optimized with respect to the SDCI energy for Li₂. Both H₂ and Li₂ were at their equilibrium geometry.

4. Test calculations

The basis sets presented here have been designed to be good general purpose basis sets for molecular calculations with primitive sets that are not prohibitively large for sizeable molecules. Some of the flexibility in the basis sets is inevitably lost when they are contracted, and truncation errors occur. Tables 1-3 show how the electron affinity, the ionization potential, and the polarizability are affected by truncation at different levels. All properties are calculated at the SDCI level except for the one-electron cases, which are described by an open shell SCF wave function. As can be seen from the tables, the effect of contraction is very small in most cases, indicating that the truncation error will also be small in molecular calculations. The average of the polarizability tensor was computed using the finite field approach with an external field of 0.02 a.u. This field is much too large to yield accurate values for the lighter elements, particularly lithium. Therefore a series of finite field calculations were performed for this atom with the 6s5p3d2f basis set. Extrapolation to zero field gives a polarizability of 169.8 a.u. This value is still about 6 a.u. larger than experiment, but this discrepancy is mainly due to the neglect of 1s correlation. Numerical Hartree-Fock

Basis	Н	He					
primitive	0.723	<0					
4s3p2d	0.720	<0					
3s2p1d	0.707	<0					
3s2p	0.693	_					
2s1p	0.322	<0					
exp ^a	0.754	<0					
Basis	Li	Be	В	С	N	0	F
primitive	0.617	<0	0.154	1.133	<0	1.025	2.976
6s5p3d2f	0.617	<0	0.153	1.131	<0	1.018	2.972
5s4p3d2f	0.616	<0	0.151	1.131	<0	1.016	2.975
4s3p2d1f	0.568	<0	0.143	1.125	<0	0.982	2.951
exp ^a	0.618	<0	0.277	1.263	<0	1.461	3.399

Table 1. The electron affinities (in eV) of the ground state atoms H-F computed using an SDCI wave function

^a Experimental results from [14]

ANO basis sets for correlated molecular wave functions

Basis	н	He						
primitive	13.606	24.556						2
4s3p2d	13.605	24.550						
3s2p1d	13.605	24.525						
2s1p	13.542	24.502						
exp ^a	13.606	24.580						
Basis	Li	Be	В	С	N	0	F	Ne
primitive	5.342	9.292	8.179	11.158	14.451	13.327	17.133	21.296
6s5p3d2f	5.342	9.295	8.173	11.153	14.448	13.313	17.123	21.319
5s4p3d2f	5.342	9.296	8.169	11.155	14.456	13.316	17.123	21.363
4s3p2d1f	5.340	9.297	8.113	11.124	14.444	13.257	17.069	21.455
exp ^a	5.390	9.320	8.296	11.264	14.534	13.614	17.42	21.56

Table 2. The ionization potentials (in eV) of the ground state atoms H - Ne computed using an SDCI wave function

^a Experimental results from [15], except for hydrogen, where the infinite mass eigenvalue is used

Table 3. The average polarizability (in au) of the ground state atoms H-Ne computed using an SDCI wave function

Basis	Н	He						
primitive	4.47	1.37						
4s3p2d	4.43	1.38						
3s2p1d	4.28	1.27						
3s2p	4.28							
2s1p	1.77	0.71						
exp ^a	4.50	1.38						
Basis	Li	Ве	В	С	N	0	F	Ne
primitive	172.5	38.98	21.01	11.72	7.21	5.05	3.50	2.50
6s5p3d2f	172.4	38.92	21.06	11.74	7.22	5.04	3.40	2.34
5s4p3d2f	172.4	38.91	21.00	12.09	7.22	5.05	3.46	2.40
4s3p2d1f	173.4	38.31	20.89	11.79	7.18	4.92	3.09	1.73
exp ^a	164	37.8	20.4	11.9	7.42	5.41	3.76	2.66

^a Recommended values from [16]

calculations yield a polarizability of 170.1 a.u. [12], which is very close to the present result.

The experimental electron affinities are very hard to reproduce for the heavier atoms, since inclusion of higher excitations and the use of saturated basis sets are necessary. Feller and Davidson [2] have recently investigated the basis set and correlation level dependence of the electron affinity for oxygen. They obtained a value of 1.034 eV at the SDCI level with a large basis set (23s12p10d6f3g). This result can be assumed to be very close to the basis set limit. The result was

obtained with a wave function which included 1s correlation. The effect of correlating the 1s electron was estimated to be -0.025 eV, which places the valence SDCI value at 1.059 eV, to be compared to the value 1.025 obtained with the primitive basis set used here. We also performed CPF calculations and obtained an electron affinity of 1.21 eV using the 6s5p3d2f basis set, which is 0.25 eV lower than the experimental value, but must be considered as very satisfactory.

The ionization potentials are, as can be expected, more stable with respect to basis set truncation. The deviations between the SDCI results and experimental values are most probably due to missing higher order excitations in the wave functions.

In Table 4 we compare the truncation errors obtained with the present average density matrix technique and the original single state optimization scheme suggested by Almlöf and Taylor [3]. These results show clearly that for the properties used in the averaging, much smaller errors due to basis set contraction are obtained with the present scheme.

The truncation error for the total SCF and SDCI energies of the hydrogen molecule (r(HH) = 1.4 a.u.) is shown in Table 5. The SCF energies are almost unaffected by the contraction, while the correlation energy gradually decreases with the contraction, leading to a total contraction energy loss of 0.1 eV for the $3s_2p_1d$ set. The truncation error for the nitrogen molecule at a bond distance of 2.1 a.u. is shown in Table 6. The binding energy is computed as the molecular energy minus twice the atomic energy. This introduces a size consistency error at the SDCI level; however the object here is not to compute an accurate binding energy for N₂, but to establish the truncation errors obtained with the present basis sets. As expected the errors are small on the SCF level and slightly larger for the correlation energy. A comparison with results obtained using ground

	Averaged A	ANOs	Ground state ANOs		
	SCF	SDCI	SCF	SDCI	
Polarizability (a.u.)					
primitive	5.032	5.578	5.032	5.578	
6s5p3d2f	5.035	5.591	3.916	4.160	
5s4p3d2f	5.041	5.616	3.812	4.016	
4s3p2d1f	4.975	5.577	3.037	3.052	
Electron affinity (eV)					
primitive	<0	1.025	<0	1.025	
6s5p3d2f	<0	1.018	<0	0.888	
5s4p3d2f	<0	1.016	<0	0.761	
4s3p2d1f	<0	0.983	<0	0.395	
Ionization potential (eV)					
primitive	11.968	13.327	11.968	13.327	
6s5p3d2f	11.969	13.313	11.968	13.322	
5s4p3d2f	11.980	13.316	11.969	13.320	
4s3p2d1f	11.999	13.257	12.011	13.316	

Table 4. Comparison of truncation errors for the oxygen atom, obtained with the present average density matrix method and ground state optimized ANOs

ANO basis sets for correlated molecular wave functions

Basis set	SCF	SDCI	E (corr.)	%
primitive	-1.133570	-1.173712	0.040212	100.0
4s3p2d	-1.133553	-1.173504	0.039512	98.3
3s2p1d	-1.133479	-1.172575	0.039096	97.2
3s2p	-1.133418	-1.170720	0.037302	92.8
2s1p	-1.132793	-1.165245	0.032452	80.7

Table 5. Effects of the basis set contraction on the total SCF and SDCI energies for the hydrogen molecule, at equilibrium geometry (in a.u.)

Table 6. Effects of basis set contraction on the binding energy for the N_2 molecule^a. Comparison between density averaged and ground state optimized ANOs (energies in eV)

Averaged ANOs	SCF	SDCI
6s5p3d2f	5.082	8.378
5s4p3d2f	5.064	8.361
4s3p2d1f	5.000	8.213
Ground state ANOs		
6s5p3d2f	5.086	8.401
5s4p3d2f	5.077	8.388
4s3p2d1f	5.029	8.245

^a The calculations were made at r(NN) = 2.1 a.u., and the binding energy was obtained as $2E(N) - E(N_2)$.

state optimized ANOs is also made in this same table. We notice that the results obtained with the two different kinds of basis sets are virtually identical. Obviously the detailed way in which the basis set is contracted is not important for the binding energy in this non-polar molecule.

The situation is different for the more polar system HF. CPF [13] calculations were performed at three distances around the minimum geometry (using a separation of 0.1 a.u.). The results are given in Table 7. Obviously the computed spectroscopic constants are not very accurate, due to the large grid and small number of points used, but that is not very important since our aim here is only to compare the effect of contraction and the use of average density ANOs in contrast to single state optimized ANOs. We notice that the latter give a slightly lower total energy, as might be expected. The computed binding energy is, however, larger and more stable with the density averaged basis set, and the dipole moment (and its derivative) converges faster towards the value obtained with the primitive set.

It is well known that ANO basis sets give only small errors due to basis set superposition (BSSE) [3]. In order to investigate the BSSE for the present orbitals we have made calculations on the fluorine atom with a set of fluorine ghost orbitals located at a distance of 2.68 a.u. from the atom (corresponding to the equilibrium bond distance in F_2). The computed SDCI superposition errors

Basis	r _e (Å)	E + 100 a.u.	D_e (eV)	$\omega_e \ (\mathrm{cm}^{-1})$	μ (a.u.)	<i>dµ/dr</i> (a.u.)
Primitive averaged ANOs	.922	364189	5.94	4165	.701	.304
6s5p3d2f	.923	359378	5.89	4178	.709	.302
5s4p3d2f	.923	357093	5.89	4174	.713	.303
4s3p2d1f	.924	341116	5.89	4190	.734	.309
Ground state ANOs						
6s5p3d2f	.922	360546	5.87	4166	.726	.314
5s4p3d2f	.923	359581	5.87	4169	.726	.310
4s3p2d1f	.923	348379	5.83	4176	.733	.301
exp	.917ª	·	6.12 ^a	4138 ^a	.707 ^ь	

 Table 7. A CPF study of the effects of basis set contraction on the properties of the HF molecule.

 Comparison between density averaged and ground state optimized ANOs

^a From [17]

^b From [18]

for the 6s5p3d2f, 5s4p3d2f, and 4s3p2d1f basis sets were 11.8, 18.7 and 49.7 meV, respectively—a very satisfactory result.

5. Conclusions

The basis sets given in the appendix of the present contribution have been obtained by an averaging procedure, which includes electronic states of the atom that are important in chemical bond formation. Thus, the orbitals have been constructed such that they simultaneously give accurate values for the ionization potential, the electron affinity, and the polarizability of the atom. Results for these properties that are stable with respect to basis set truncation have also been obtained. It is clear from the test calculations on small molecules that the truncation errors are also small for the molecular properties. Like other ANO basis sets, the present set has the additional virtue of yielding very small basis set superposition energies, which is important, especially when they are used to calculate intermolecular forces. Similarly optimized ANOs for second and third row atoms will be presented in forthcoming issues of this journal.

Acknowledgements. The authors are grateful to Jeppe Olsen for valuable discussions. The research reported in this communication has been supported by a grant from the Swedish Natural Science Research Council (NFR) and by IBM Sweden under a joint study contract.

Appendix

The contracted ANO basis function for the atom H - Ne are given in this appendix. For every atom the largest contracted basis set given is 6s5p3d2f for the atoms Li - Ne and 4s3p2d for H and He. These basis sets can be further contracted by just deleting functions from the right. The weakly occupied ANOs contain a mixture of correlation and polarization effects. Thus, when only one orbital is used, a compromise between polarization and correlation is obtained. The major contribution to both these features is obtained with two virtual orbitals, corresponding to the basis set 4s3p2d for the atoms Li - Ne. Larger basis sets will include more of the finer details in polarization and correlation. Basis sets of the quality 5s4p3d2f will give results close to the basis set limit. Notice that the 1s orbital in Li – Ne is described by only one ANO. Thus these basis sets cannot be used to correlate the 1s shell.

The basis set for hydrogen should preferably not be smaller than $3s_1p$. Already this choice gives results not too far from the basis set limit (cf. Tables 1-3, 5). Notice also the small difference between this basis set and $3s_2p_1d$. An analysis of the occupation numbers of the average density matrix suggests that the third s-type function should be added before the first p-type function.

The basis sets can be obtained from the authors, either on a diskette, or through electronic mail.

Hydrogen atom

Exponents	<u>ls</u>	2 <u>s</u>	<u>3s</u>	4s
188.61445	.00096385	0013119	.00242240	0115701
28.276596	.00749196	0103451	.02033817	0837154
6.4248300	.03759541	0504953	.08963935	4451663
1.8150410	.14339498	2073855	.44229071	-1.146271
.59106300	.34863630	4350885	.57571439	2.5031871
.21214900	.43829736	0247297	9802890	-1.582849
.07989100	.16510661	.32252599	6721538	.03096569
.02796200	.02102287	.70727538	1,1417685	.30862864
Exponents	2p_	3p	4p	
2.3050000	.11279019	2108688	.75995011	
.80675000	.41850753	5943796	.16461590	
.28236200	.47000773	.08968888	-1.371014	
.09882700	18262603	.86116340	1.0593155	
109001/00	.10202000	.00110340	1.0393133	
Exponents	3d	4d		
1.8190000	.27051341	7938035		
.72760000	.55101250	0914252		
. 29104000	.33108664	.86200334		
.29104000	.55108004	.00200334		
Holium at				
<u>Helium_ate</u>	m			
		25	38	45
Exponents	<u>ls</u>	<u>2s</u>	<u>3s</u>	<u>4s</u>
Exponents 1149.2705	 .00035774	0005306	.00070544	0004722
Exponents 1149.2705 172.04457	<u>1s</u> .00035774 .00277289	0005306 0040330	.00070544	0004722 0104722
Exponents 1149.2705 172.04457 39.080465	<u>18</u> .00035774 .00277289 .01429838	0005306 0040330 0225804	.00070544 .00705199 .03126037	0004722 0104722 0194099
Exponents 1149.2705 172.04457 39.080465 11.036173	<u>ls</u> .00035774 .00277289 .01429838 .05586749	0005306 0040330 0225804 1026255	.00070544 .00705199 .03126037 .32197965	0004722 0104722 0194099 7127356
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284	0005306 0040330 0225804 1026255 4577114	.00070544 .00705199 .03126037 .32197965 1.0047488	0104722 0104722 0194099 7127356 0101329
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284 .33133146	0005306 0040330 0225804 1026255 4577114 6059653	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804	0004722 0104722 0194099 7127356 0101329 1.9343339
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728	0005306 0040330 0225804 1026255 4577114 6059653 .57131336	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .16420600	<u>18</u> .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728 .18903228	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728	0005306 0040330 0225804 1026255 4577114 6059653 .57131336	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .16420600 .05747200	18 .00035774 .0277289 .01429838 .05586749 .16336284 .33133146 .41429728 .18903228 .00515606	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829 .05061692	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .16420600 .05747200 Exponents	18 .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728 .18903228 .00515606 	0005306 00403300 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 3p	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829 .05061692	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .16420600 .05747200 Exponents 4.5500000	18 .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728 .00515606 2p .089220600	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 1867350	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829 .05061692 4p .85489228	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .16420600 .05747200 Exponents 4.5500000	18 .00035774 .00277289 .01429838 .05586749 .16336284 .3313146 .41429728 .0515606 .08926060 .38050238	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 1867350 5117345	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829 .05061692 .85489228 .10926707	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .05747200 Exponents 4.5500000 1.5925000 .55737500	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284 .3133146 .41429728 .18903228 .00515606 <u>2p</u> .08926060 .38050238 .44912372	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 1867350 5117345 1981506	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 .4725896 .95308829 .05061692 .85489228 .10926707 -1.263812	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .16420600 .05747200 Exponents 4.5500000	18 .00035774 .00277289 .01429838 .05586749 .16336284 .3313146 .41429728 .0515606 .08926060 .38050238	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 1867350 5117345	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 4725896 .95308829 .05061692 .85489228 .10926707	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .16420600 .05747200 Exponents 4.5500000 1.5925000 .55737500 .19508100	18 .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728 .06926060 .380520238 .44912372 .27765440	0005306 0040330 .0225804 1026255 4577114 .6059653 .57131336 .54758341 .01165900 1867350 1867350 5117345 1981506 .99587976	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 .4725896 .95308829 .05061692 .85489228 .10926707 -1.263812	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053
Exponents 1149.2705 172.04457 39.080465 11.036173 3.5641520 1.2404430 .44731600 .05747200 Exponents 4.5500000 1.5925000 .55737500	<u>ls</u> .00035774 .00277289 .01429838 .05586749 .16336284 .33133146 .41429728 .18903228 .00515606 <u>2p</u> .08926060 .38050238 .44912372	0005306 0040330 0225804 1026255 4577114 6059653 .57131336 .54758341 .01165900 3867350 5117345 1981506	.00070544 .00705199 .03126037 .32197965 1.0047488 -1.290804 .4725896 .95308829 .05061692 .85489228 .10926707 -1.263812	0004722 0104722 0194099 7127356 0101329 1.9343339 -2.541659 .89814053

T.3000000	. 16855051/	.182028/8
.54400000	.30332967	.69874000

<u>Lithium atom</u>

Exponents	1s	28	3в	48	58	65
9497.9344	.00007470	0000110	.00000638	0000401	.00015532	0000908
1416.8112	.00058364	0000857	.00004887	0003102	.00121291	0008080
321.45994	.00306095	0004507	.00026583	0016465	.00634647	0034499
91.124163	.01260109		.00106853		.02593172	
29.999891	.04234724		.00397706			0396592
11.017631		0177673	.01120297			1664225
4.3728010		- .0397968	.03121889			0437952
1.8312560		0701282	.06165080			5854796
.80226100	.30337582			- .0542651	5509683	1.9863927
.36264800	.08637933			.08320127	-1.387610	
.11399500	.00264390	.22012877	-1.094107		1.9839088	
.05123700	.00121696		2924223		7590298	5.7082509
.02246800	.00056197	.29452752	.84809436		6844426	-4.866391
.00786000	.00001973	.02495030	.44800085	1.3038650	.64145200	1.7783142
Exponents	2p	310	4p	5p	6p	
13.119504		0023268		0105332	.01182621	
3.0774242		0112242		0734282	.10322211	
1.0988005			.17514656		.88284569	
.43577840		0338775		8859633	4845183	
.18024320		4544520		1.6251780	-1.224391	
.07613330		4963084	-1.291082		2.5068516	
.03254650	.34816472	.48858791	.20705209		-2.256798	
.01401820	.15059753	.56023390	.42867281	.94681211	.70847643	
.00490640	.01570330	.07028069	.00433116		.40248134	
Exponents	<u>3d</u>	4d	5d			
.45000000	.02237294		.17667927			
.15750000	.37508794		.99447178			
.05512500	.46891728		-1.552621			
.01929380	.36536291	.95628826	.87869005			
Exponents	4£	5f				
.24000000	.38777831	3795652				
.09600000	.40160976	6103086				
.03840000	.44614994	1.0900688				

Beryllium atom

Exponents	1s_	25	38	45	5s	<u>6s</u>
22628.599	.00005331	0000102	.00001238	0000163	.00002035	0000176
3372.3181	.00041812	0000804	.00009764	0001087	.00013929	0002212
760.35040	.00222604	0004281	.00051672	0007272	.00089927	0005446
211.74048	.00956276	0018487	.00225262	0023214	.00303917	0059611
67.223468	.03481791	0068008	.00822815	0124024	.01555533	- .0064601
23.372177	.10594611	0213719	.02644133		.03697737	0903658
8.7213730	.24566318	0530352	.06578965		.15845461	0284501
3.4680910	.38607362	1004577	.13010642		.08359833	6344349
1.4521440	.31037318	1375139	.19754924		.95775189	.36704639
.60861500	.06389402	0650704	.07492653	1.2263580	-3.527723	2.4990795
.25768600	0015314	.32457317	-1.388722	1.0746878	3.7533891	-5.257408
.10417600	.00118247	.61816433			-1.194024	6.0739469
.04242700	0002521	.20476749	1.0260181		-1.247780	-4.688419
.01484900	.00007381	.00430350	.02577768	.28184411	1.3591094	1.9636275
Exponents	2p	3p	4p	5p	6p	
33,710184	.00103783	0012142	.00258725	0022873	.00676966	
8.0576495	.00660868	0056126	.02089535	0516249	.04194085	
2.8364714	.02155898		.05737162	0217907	.21838026	
1.0999657	.06087782		.26426850	-1.011218	1.1628586	
.44339640	.20355732		1.0647600	.73527735	-2.555678	
.18222640	.45796695	4908092	-1.436307	.91566937	2.6923753	
.07572410	.36859063	.72214518		-1.931695	-1.672575	
.03168540	.06306415	.43076218	.77703464	1.1633019	.12607530	
.01108990	.00210971	.00225563	0320504	. 20468349	.67295606	
Exponents	3d	4d	5d			
1.4000000	.00667733	0103868	.18372869			
.49000000	.24681337	.89258071	.84246998			
.17150000	.65744628	1507099	-1.494497			
.06002500	.25351913	6812165	1.1174804			
Exponents	4 f	5£				
.50000000	.32812970	-1.103944				
.20000000	.65980420	.65022981				
.08000000	.16284725	.35201447				

Boron atom

Exponents	18	2s	38	48	58	6s
33360.217	.00005830	0000121	.00001207			0000297
4972.0952	.00045649	0000950	.00009451	0001292	.00013762	0002597
1125.6417	.00240885	0005028	.00049965	0007771	.00096494	0011674
316.49136	.01016307	0021264	.00211919	0027820	.00280308	0062184
102.00726	.03609547	0076744		0125600	.01654501	
36.295873	.10598103	0232179	.02340454	0301270	.03061558	
13.971410	.23956537	0569468	.05811557			1661954
5.7411560		1062577	.11167395			
2.4942680	.30814648		.17056231	4598841	.82053218	3403721
1.1142020	.07769277	0430285	.01726759	.67401792	-2.154533	
.42154900	.00147971	.37194411	9989044	1.5042519	1.0217582	-5.718972
.16963300	.00049907	.56520899	2265722	-2.476043	1.7061016	
.06853500	0000262	.19212692			-3.083764	
.02398700	.00002361	.02191276	.22137860	.74299933	1.8083378	1.4190724
Exponents	2p	3р	4p	5p	6р	
55.000000	.00101856	0007776	.00075901		.00638030	
13,366101	.00739575	0057768	.00591508	0325794	.03979359	
4.1353940	.03225139	0226134	.01360093	1313091	.32302223	
1.4812560	.09834638	0696834	.03206285	6809573	.89709816	
,60213600	.23180240	2551146	.62952613	3491983	-1.699850	
.25563600	.34124357	3607786		1.3937462	.57073026	
.11115100	. 29329828				1.3173404	
.04764800	.16959513	. 29599379	3535550	7747354	-1.864229	
.01667700	.15075694	.66292780	.84690415	.57687382	.89953374	
Francesta	3d	4d	5đ			
Exponents 1,2000000		1224628	.51304622			
.42000000		5604733	.50979375			
.14700000		0894260	-1.318999			
.05145000	. 28557335		.86638551			
.03143000	.2000/000		.00000001			
Exponents	<u>4f</u>	5£				
.85000000	.18252189	4773313				
. 34000000		6578114				
.13600000	.61043750	.95136724				

Carbon atom

Exponents	1s	2s	38	48	58	6s
50557.501	.00005527	0000120	.00001185	0000156	.00001740	0000264
7524.7856	.00043433	0000940	.00009271	0001140	.00012323	0002304
1694.3276	.00231588	0005028	.00049893	0006731	.00076340	0010505
472.82279	.00987292	0021476	.00211800	0025323	.00270031	0055835
151.71075	.03521949	0077942	.00777839	0109003	.01267800	0161830
53.918746	.10419375	0237634	.02363282	0277807	.03028665	0750168
20.659311	.24127411	0600235	.06163057	0958713	.12014642	1431410
8.3839760	.38401741	1153985	.11896802	1247806	.12427731	4657256
3.5770150	.30823714	1539009	.18806208	3932460	.55304311	2830282
1.5471180	.06830554	0145946	0540304	.67960039	-1.660497	3.6186451
.61301300	.00077821	.38958492	9814137	1.1978690	.21977066	-6.077981
. 24606800	.00099049	.53972907	1096758	-1.897952	2.6568329	5.9472498
.09908700	0000893	.18840601	.88473559	0044614	-3.596556	-3.682612
.03468000	.00004714	.02585753	.29649833	1.0142148	1.8521129	1.1778905

Exponents	2p	3p	4p	<u>5p</u>	<u>6p</u>
83.333155	.00122406	0011444	.00146694	0037213	.00715443
19.557611	.00943894	0089796	.01445532	0379844	.03646278
6.0803650	.04177441	0378456	.04663731	1698042	.40106973
2.1793170	.13183304	1292708	.23665375	8114152	.70600551
.86515000	.27891188	3784022	.60887342	.24217302	-2.003223
.36194400	.36686633	2692137	3917793	1.3030673	1.6549840
.15474000	.27905913	.29175424	8700229	-1.200142	.06014000
.06542900	.13804807	.54366980	.42005046	0905452	-1.254857
.02290000	.03419495	.26283081	.57994967	.56980090	.93443306
Exponents	<u>3d</u>	4d	<u> </u>		

Exponents	3d	4d	5d
1.9000000	.09873123	1455013	.56376833
.66500000	.45296608	5076809	.43125921
.23275000	.43624570	1015630	-1.277998
.08146300	.27192502	.92519220	.83542052
Exponents	4f	5f	
1.2500000		-,5041380	
.50000000	.51596730	4373719	
. 20000000	.37742313	1.0147246	

<u>Nitrogen atom</u>

Exponents	ls	25	35	4 s	58	68
74761.715	.00005021	0000112	.00000972	0000121	.00001870	0000247
11123.654	.00039457	0000878	.00007649	0000903	.00012934	0002152
2512.6857	.00208853	0004667		0005179	.00082182	0009762
703.77729	.00890794	0019931		0020046	.00277581	0051642
225.47879	.03208845	0073033		0083600	.01376942	0151043
79.615810	.09744736	0228259	.02014048	0227440	.03116421	0698700
30.237283	.23178948	0592207	.05240308	0744866	.13563675	1409305
12.263622		1156121		1108600	.13557620	4816840
5.2650860		1565083		2983389	.66633412	3990689
2.3334710	.08237821		0050051		-1.624942	3.6895463
.90185600			8418720		3859865	-5.885458
.35833600	.00024647	.54576534			3.2306654	5.5787940
	0000289	.21035430			-3.517450	-3.351193
.04938300	.00000968	.01278945	.57660532	1.4445805	1.5200656	1.0457791
Exponents	2p	3p	4p	5p	6р	
126.66657	.00114231	0009565	.00142011	0027058	.00470949	
29.837389	.00895909	0075763	.01254386	0302621	.03861619	
9.3940380	.04053750	0336947	.05099132	1190992	.26167989	
3.4051040	.12949014	1133437	.20571183	6278549	.90516411	
1.3500000	.27678081	3055498	.54520414	2116148	-1.623290	
.55769600	.36888892	2733953	1522542	1.4074630	.49583691	
. 23244900	.29346193		8377166		1.2390022	
.09426400	.12846833	.49253441		6807072	-1.780651	
.03299200	.03905858	.40980124	.74594407	.74984862	.94918349	
Exponents	3d	4d	5d			
	.12053068	1733321	.61298904			
.96250000	.50760685	4739903	.31696608			
.33687500	.44539556	.03678810	-1.216663			
.11790600	.15876917	.89316126	.87035573			
Exponents	4f	5f				
1.8000000	.33068755	7670701				
.72000000	.55560706	0111511				
.28800000	.30748869	.80193318				
.2000000		.00193310				

Oxygen atom

Exponents	18	25	38	45	58	65
105374.95	.00004590	0000105	.00000896	0000109	.00001811	0000224
15679.240	.00036065	0000825	.00007048	0000822	.00012131	0001947
3534.5447	.00191977	0004412	.00037567	0004675	.00080932	0008912
987.36516	.00820666	0018864	.00161462	0018465	.00257695	0046992
315.97875	.02972570	0069540	.00593400	0075585	.01377944	0138134
111.65428	.09045579			0210868	.02811115	0628944
42.699451	.21740537	0568513	.04946829	0667511	.13747540	1285556
17.395596	.36876567	1139635	.10303987	1093673	.12206903	4617198
7.4383090	.33727977	1620201	.16205865	2731431	.73734928	4946086
3.2228620	09675046	0333800	.00093665	.20971367	-1.705751	3.7909700
1.2538770	.00256736	.36550685	8224251	1.2034807	3504060	
.49515500	.00137461	.55200311	~.1017902	6774694	3.1429946	5.4974482
	0001410	.22363927		-1.429884		
.06708300	.00006829	.00657453	.68770275	1.4891068	1.4012375	1.0457181
Exponents	2p	30	4p.	5p	6p	
200.00000	.00089331	0008384		0019528	.00307588	
46.533367	.00736901	0068491		0243404	.03750571	
14.621809	.03493921	0328505		0944754	.18584407	
5.3130640	.11529855	1100060		5489856	1.0270651	
2.1025250	.25832314	3135263	.57076519	3495476	-1.567541	
.85022300	.36962312	3196011	1789291	1.4659089	.38159176	
.33759700	.32387894	.22172426	8982077	7571894	1.1466648	
.12889200	.14679893	.56226160	.26666430	5905673	-1.662704	
.04511200	.03361269	.30132513	.62589942	.79593212	.97284427	
Exponents	3đ	4 d	5d			
3.7500000	.12849338	2182055	.62420931			
1.3125000	.52118843	4817695	.24030630			
.45937500	.43457843	.13575954	-1.183642			
.16078100	.14574094	.82977340	.92087218			
Exponents	4f	5 f				
2.3500000		8835406				
2.3300000		22624078				

.94000000 .56215546 .22624078 .37600000 .26352789 .67223250

Fluorine_atom

Exponents	18	2s	35	48	58	65
	.00006366	0000148	.00001511	0000154	.00002451	0000282
15281.007	.00050280	0001172	.00011869	0001160	.00016934	0002659
3441.5392	.00266772	0006239	.00063631	0006596	.00108913	0010810
967.09483	.01120034	0026280	.00265994	0025500	.00356213	0065142
314.03534	.03909798	0093503	.00960683	0102361	.01777027	0149993
113.44230	.11226574	0278490	.02843363	0267629	.03582817	
44.644727	.24720417	0676880	.07198306	0829345	.16274938	1018524
18.942874		1230542		1141649	.12263698	
8.5327430	.29086165	1522180	.20316169	3160866		.03279916
3.9194010	.07810237	0075794		.44872390		
1.5681570	.00354034	.37593135			.63328329	
.62329000	.00091567	.54384824		-1.369570	2.2900002	
.24086100	.00007651	.21277464	.74900266	6041401	-3.123159	
.08430100	.00002052	.00664218	.34476916	1.2967102	1.5381196	1.2345411
Exponents	2p	3р	4p	5p	60	
245,33029	.00098798	0009793		0021447	.00405121	
56.919005		0083410		0279769	.03277105	
17.604568		0407457		1126856	.25347429	
6.2749950		1455266		6847635	.94411468	
2.4470300		3556275	.58183694		-1.880888	
.99506000		2537163		1.3824370	1,1269082	
.40397300	.30381116		7991571	-1.144517	.45705245	
.15481000	.13893786	.56520351	.46852138		~1.365746	
.05418400	.02581864	.23237085	48624407	.68548718	.97459622	
Exponents	3d	4d	5d			
5.0000000	.13035593	2833655	.64835313			
1.7500000	.52550546		.08528133			
.61250000	.44216398		-1.076245			
.21437500	.12327467					
		,21091	1,0000207			
Exponents	4 f	5f				
3 2000000	35649821					

3.2000000	.35649821	8994161
1.2800000	.58411540	.26248017
.51200000	.24042220	.65173543

Neon atom

Exponents	1s	28	38	48	58	68
166165.08	.00004720	0000111	.00001383		.00001875	0000176
23107.524	.00040067	0000942	.00011547	0001015	.00013776	0002200
5060.1539	.00219321	0005180	.00064915	0006547	.00092611	0006395
1384.6123	.00958756	0022665	.00276318	0023205	.00310603	0061424
436.51258	.03507343	0084593	.01073356	0113825	.01639808	0077547
153.47148	.10465170	0260486	.03183250		.03407524	0922738
59.389087	.23771234	0653597		1058383	.16092114	0201429
24.861967	.36960611	- .1222657	.15298113		.13776014	
11.015704		1585710		5230270	.88474081	.68366327
4.9651750		0060287		1.1226234		2.1521765
1.9365030		. 38289567	-1.322588		2.1910109	
.76572800	.00096535	.53886493		-1.737905	.44521021	
.29553800	.00005404	.21144871	.75461754	.39778722	-2.207583	-4.079378
.10343800	.00002679	.00280490	.06136710	.89004131	1.5272555	1.5437551
Exponents	2p	3p	4p	5p	6р	
234,94500	.00158261	0022102		0075907	.01763038	
55.077385	.01257669	0185114	.03630469		.01841979	
17.389549	.05698653	0815212	.14392888	4327586	1.1400838	
6.3895370	.16812301	2923570	.73364643	7725174	-1.419730	
2.5420820	.30738595	5403060	1076693	2.1038154	.27750201	
1.0337640	.35831115	.09151549	-1.214315	-1.597286	1.3170494	
.41878800	.27869376	.60908795	.64108328	0026161	-2.136422	
.16462700	.09521109	.24352740	.35686171	.63860642	1.4278881	
.05761900	.00210199	.00713030	.01895012	0022546	0967242	
Exponents	3d	4d	5đ			
6.4200000	13708557	4204726	.74155798			
2.2470000	.54470998	5592957	3478303			
.78645000	.44972742	.70000990	6598257			
.27525750	.06537094	.33900230	1.0210673			
B						
Exponents 4.1900000	4f	<u>5f</u> 9362870				
4.1900000		9362870				

1.6760000	.61486823	.33666424
.67040000	.20832288	.60353969

References

- 1. Pettersson LGM, Siegbahn PEM (1985) J Chem Phys 83:3538
- 2. Feller D, Davidson ER (1989) J Chem Phys 90:1024
- 3. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070
- 4. Almlöf J: MOLECULE, a vectorized Gaussian integral program
- 5. Raffenetti RC (1973) J Chem Phys 58:4452
- 6. Almlöf J, Helgaker T, Taylor PR (1988) J Phys Chem 92:3029
- 7. Langhoff SR, Bauschlicher Jr CW, Taylor PR (1988) J Chem Phys 88:5715
- 8. Silver BL (1976) Irreducible tensor methods. New York, Academic Press, pp 16-29
- 9. Dunning Jr TH (1989) J Chem Phys 90:1007
- 10. van Duijneveldt FB (1970) IBM technical research report RJ945
- 11. Schmidt MW, Ruedenberg K (1979) J Chem Phys 71:3951
- 12. Voegel T, Hinze J, Tobin F (1979) J Chem Phys 70:1107
- 13. Ahlrichs R, Scharf P, Ehrardt C (1985) J Chem Phys 82:890
- 14. Hotop H, Lineberger WC (1985) J Phys Chem Ref Data, vol 14, no 3
- 15. Moore CE (1949) Circ Nat Bureau Stand 467
- 16. Miller TM, Bederson B (1977) Adv At Mol Phys 13:1
- 17. Huber KP, Herzberg G (1979) Constants of diatomic molecules. New York, Van Nostrand Reinhold
- 18. Muenter JS, Klemperer W (1970) J Chem Phys 52:6033